检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学(北京)机电与信息工程学院,北京100083
出 处:《煤炭学报》2013年第A02期508-512,共5页Journal of China Coal Society
基 金:国家自然科学基金重点资助项目(51134024);国家自然科学基金资助项目(51074169);国家高技术研究发展计划(863)资助项目(2012AA0622031)
摘 要:为了尽可能减少作业人员数目,研究了煤岩图像的自动识别技术,介绍了煤岩图像的识别基础、小波变换和支持向量机原理,分析了煤岩图像纹理在多尺度分解情况下的特点以及支持向量机的参数设置,利用煤岩图像基于灰度共生矩阵的纹理统计量角二阶矩、对比度、相关性、均值、方差构造纹理特征子向量P1,利用煤岩图像不同尺度分解下的角二阶矩、对比度、相关、均值、方差构造纹理特征子向量P2,利用不同尺度分解系数构造纹理特征子向量P3,结合3个特征子向量构造纹理特征向量,最后结合支持向量机对煤岩图像进行分类识别。对不同的特征抽取方式以及煤岩的不同分类进行了比较分析。结果表明:该特征抽取以及分类方法能有效的表达纹理信息,对煤岩的识别准确率达到了97.959 2%,与不使用小波的方法相比提高了7.01%。研究结果可为煤岩界面的自动识别提供依据。Abstract: In order to reduce the number of workers, the automatic identification technique of coal and rock image was researched. The basis of coal rock image recognition and the principle of wavelet transform and support vector machine were proposed. Coal and rock image texture feature in muhiseale decomposition and support vector machine' s parameter settings were analysed. Texture vector P1 were structured by angular second moment, contrast, relevance, mean val- ue and variance. Texture vector P2 were structured by angular second moment, contrast, relevance, mean value and va- fiance after coal and rock image were decomposed. Different scale decomposition coefficient was used to construct tex- ture features vector P3. Three characteristic vectors were used to construct texture vector. Finally, classification and identification were carried by support vector machine. Comparison and analysis were made by feature extraction in dif- ferent ways and coal-rock different classification. The results show that the feature extraction and classification methods can effectively express texture information and the coal rock recognition accuracy achieves 97. 959 2%. The testing ac- curacy is increased by 7.01% compared with not using wavelet. Research results could provide the basis for the coal rock interface automatic recognition. Key words: coal rock ; wavelet; support vector machine ; image ; feature extraction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222