检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学电气信息学院,成都610065 [2]四川电力职业技术学院,成都610071
出 处:《电力系统及其自动化学报》2013年第5期162-166,共5页Proceedings of the CSU-EPSA
摘 要:对线损率预测的方法进行了研究,采用灰色模型与神经网络组合的方法对线损率进行预测。首先用GM(1,1)建模对线损率的变化趋势分析计算,运用灰色关联度分析与线损率相关的因素,确定出神经网络的输入变量,建立线损率预测的3层BP网络模型;然后采用GM(1,1)和神经网络的组合预测模型得到线损率的最终预测结果;最后通过对实例的分析,证明所提方法提高了线损率预测的精度。The paper is mainly focusing on the research of the method for line loss rate forecasting by adopting grey model combined with neural network. Firstly, GM ( 1,1 ) model can be used to analyze and calculate thevariation trend of line loss rate. The input variables of the neural network can be determined by the grey relationship of related factors. Three-layer BP model for line loss rate forecasting is constructed, and then the eventual result can be obtained by us- ing the combined model of GM ( 1,1 ) and neural network. Finally, an example is taken to prove the precision of line loss rate forecasting by the proposed method in the paper.
分 类 号:TM744[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3