检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学控制科学与工程系,黑龙江哈尔滨150001
出 处:《系统工程与电子技术》2013年第11期2356-2363,共8页Systems Engineering and Electronics
基 金:国家自然科学基金(61004072;61174200;61273175);教育部新世纪优秀人才计划(NCET-11-0801);黑龙江省青年科学基金(QC2012C024);中央高校基本科研业务费专项资金(HIT.BRETIII.201212)资助课题
摘 要:针对带有时变通信时延和输入时延的卫星编队飞行姿态协同控制问题,考虑卫星转动惯量参数不确定性及干扰,提出了一种自适应滑模L2增益控制算法。该方法首先利用自适应参数辨识技术对由转动惯量参数不确定给系统带来的扰动上界进行估计,进而设计了含时变时延信息的滑模自适应控制器,构造Lyapunov-Krasovskii函数,从理论上证明了闭环系统在该控制器作用下可以协同达到渐进稳定。在此基础上,进一步考虑存在外部干扰的影响,定义包括外部干扰与自适应参数估计误差在内的广义干扰,设计了对广义干扰具有L2增益抑制作用且含时变时延信息的姿态协同控制器。最后,仿真结果表明了所提出的控制器的可行性、有效性。With the consideration of communication time-varying delays and input time-varying delays, as well as parametric uncertainties and external disturbance, an adaptive sliding mode L2-gain attitude coordinated controller is proposed for satellite formation under a general undirected interaction topology. Firstly, an adaptive sliding mode con- troller is developed, in which the adaptive technique is employed to estimate the upper bound of the perturbation suf- fered from parametric uncertainties of the inertia matrix. A Lyapunov-Krasovskii function with information of time-de- lays is constructed to prove the asymptotic stability of the closed-loop system theoretically. Then, the controller is im- proved to ensure high robustness in the sense of L2-gain to the total perturbation from both error of parameter estimation and external disturbance, in which time-varying delays are also included explicitly. Numerical simu- lations demonstrate the effectiveness of the proposed attitude coordinated controller.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147