基于CPSO-LSSVM的网络入侵检测  被引量:6

Network Intrusion Detection Based on CPSO-LSSVM

在线阅读下载全文

作  者:刘明珍[1] 

机构地区:[1]湖南涉外经济学院实验中心,长沙410205

出  处:《计算机工程》2013年第11期131-135,共5页Computer Engineering

基  金:湖南省教育厅科研基金资助项目(11C0790)

摘  要:为提高网络入侵检测效果,提出一种结合混沌粒子群优化(CPSO)算法和最小二乘支持向量机(LSSVM)的网络入侵检测模型。将网络特征和LSSVM参数编码成二进制粒子,根据网络入侵检测正确率和特征子集维数权值构造粒子群目标函数。通过粒子群找到最优特征子集和LSSVM参数,同时引入混沌机制保证粒子群的多样性,防止早熟现象的出现,从而建立最优网络入侵检测模型。采用KDD99数据集进行性能测试,结果表明,该模型不仅能获得最优特征子集和LSSVM参数,而且提高了入侵检测速度和正确率,降低了入侵检测误报率和漏报率。In order to improve the network intrusion detection effect, this paper puts forward a network intrusion detection model based on Chaotic Particle Swarm Optimization(CPSO) algorithm and Least Squares Support Vector Machine(LSSVM). The network features and parameters of LSSVM are encoded into binary particles. The objective function of particle swarm optimization algorithm is built based on network intrusion detection accuracy and the dimensions of the feature subset. The particle swarm is used to find the optimal feature subset and LSSVM parameters, while the chaotic mechanism is introduced to guarantee the diversity of particle swarm and to prevent producing precocious phenomenon, the optimal model of the network intrusion detection is established. The performance of proposed model is test by KDD99 data and the simulation results show that proposed model can select the optimal feature subset and LSSVM parameters, the detecting speed and network intrusion detection accuracy are improved, and thereby network intrusion detection false negative rate and false positive rate are reduced.

关 键 词:入侵检测 混沌粒子群优化算法 最小二乘支持向量机 联合优化 特征选择 混沌机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象