检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《南京邮电大学学报(自然科学版)》2013年第5期111-114,共4页Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
摘 要:多集合分裂可行性问题就是要找距一族非空闭凸集最近的点,并且使得其线性变换的像距离另一族非空闭凸集最近。多集合分裂可行性问题是一类重要的最优化问题,产生于工程实践,在信号处理领域中有着广泛的应用。文中给出基于求解分裂可行问题的投影算法,该算法不需要计算矩阵谱半径,并且在迭代过程中,步长的选取不用反复从初始值开始计算,进而减小计算的工作量,提高算法的运算效率。同时该算法具有较好的稳定性,还证明了算法的全局收敛性,并且进行了数值实验,实验结果表明该算法具有较快的收敛速度和良好的可行性。The multiple-set split feasibility problem is to find the closest point to a family of non-empty closed convex sets in one space,such that its image under a linear transformation will be closest to another family of non-empty closed convex sets in the image space.This multiple-set split feasibility problem is one of the important optimization problems,which generates from the engineering sceneario and is widely applied in the signal processing field.This paper proposes a projection-type algorithm to solve the multiple-set split feasibility problem.It aviods to calculate the spectral radius of the matrix,which can improve the computing efficiency by carefully choosing the stepsize during the iterative process.Additionally it is has a good stable property.The convergence of our algorithm is proved,and valided by the numerical experiments.The results show that the proposed algorithm has a fast convergence rate and good feasibility.
关 键 词:多集合分裂可行问题 谱半径 投影收缩算法 不等式
分 类 号:O221[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117