矿用卡车单位油耗的神经网络预测  被引量:9

Neural network prediction of unit fuel consumption of mining truck

在线阅读下载全文

作  者:温廷新[1] 唐小龙[1] 马龙梅[1] 

机构地区:[1]辽宁工程技术大学工商管理学院,辽宁葫芦岛125105

出  处:《有色金属(矿山部分)》2013年第6期32-35,40,共5页NONFERROUS METALS(Mining Section)

基  金:辽宁省教育厅创新团队基金(LT2010048);山东省自然科学基金(ZR2010FL012);辽宁工程技术大学市场调研基金(SCDY2012018)

摘  要:利用TRAINCGF算法构建矿用卡车外部环境参数与卡车单位燃油消耗的BP神经网络预测模型。模型的输入信息为阶段产量、平均运距、平均高差、故障率、道路质量、司机操作、天气状况和日常维护,输出信息为单位油耗。BP神经网络模型为8—12—1结构,动量因子和学习因子分别为0.7和0.5。模型测试结果表明,相对误差最大值为4.5237%,相对拟合率值为0.9513,模型精度较高。该模型可为卡车油耗考核和油库进油提供参考。Back--Propagation artificial neural network model with TRAINCGF algorithm is used to predict ex ternal environment parameters and unit fuel consumption of mining truck. In this model, production in a certain stage, average haul distance, average elevation difference, failure rate, road quality, driver operation level, weather conditions and daily maintenance are employed as input message while unit fuel consumption was employed as output message. The optimal network architecture is considered to be 8--12--1 with momentum factor chosen to be 0.7 and learning factor chosen to be 0.5, respectively. The test result shows that the biggest relative tolerance is 4. 5237%, and the correlation coefficient is 0. 9513, and the model has good accuracy. The result strongly indicates that the ANN model is a tool to provide reference for fuel consumption assessment and oil-taking.

关 键 词:矿用卡车 神经网络 作业环境 单位油耗 

分 类 号:U495[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象