检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马占龙[1] 王高文[1] 张健[1] 谷勇强[1] 代雷[1] 彭利荣[1]
机构地区:[1]中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室,长春130033
出 处:《电子测量与仪器学报》2013年第11期1080-1085,共6页Journal of Electronic Measurement and Instrumentation
摘 要:为了控制由于磨削温度过高引起的工件表面热损伤,对磨削温度场的分布进行了仿真和预测研究。首先,采用有限元法对磨削温度场的分布状况进行了仿真研究,并通过实验验证了仿真结果的准确性;随后,以仿真结果作为训练样本采用BP神经网络对不同条件下的磨削温度进行了预测,通过与仿真结果的比较验证了BP神经网络预测模型的准确性。结果表明:采用有限元和神经网络相结合的方法对磨削温度进行仿真预测具有较高的准确性,为实际应用中磨削参数的选取提供了理论依据。In order to control the fire damage of the workpiece resulted from the higher grinding temperature, the distribution of the grinding temperature filed was simulated and forecasted. Firstly, the grinding temperature flied was simulated by FEM method, and the accuracy of the simulation result was verified by experiment. Then, the grinding temperatures of different conditions were forecasted by BP neural network with the simulation results as training samples, and the veracity of the forecast model was proved though the comparison between the results of the prediction and simulation. The results indicate that the simulation and forecast of the grinding temperature based on finite element and neural network method is accurate, and it can provide theory base for the choosing of grinding parameters in implementation.
分 类 号:TG156.33[金属学及工艺—热处理] TG580.631[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3