检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]后勤工程学院学员旅 [2]后勤工程学院后勤信息与军事物流工程系 [3]76117部队
出 处:《后勤工程学院学报》2013年第6期78-84,共7页Journal of Logistical Engineering University
摘 要:为了保证无线传感器网络中数据的完整性,针对基于LEACH路由协议的动态轮时间算法存在的问题,提出一种基于人工神经网络的数据预测算法。该动态轮时间算法中,部分簇因调整后的轮时间不足以完成数据的采集而丢失数据。数据预测算法结合传感器节点数据具有时空相关性的特点,将时空延迟算子引入神经网络模型,并通过建立的神经网络模型对数据进行预测。仿真时采用伯克利英特尔实验室的传感器数据,通过Matlab软件对模型进行测试并分析仿真结果。实验结果表明:该算法对连续多个数据的预测效果理想,预测误差始终保持在较低水平。To address at the problems that existed in dynamic roundtime algorithm based on low energy adaptive clustering hierarchy protocol (LEACHDRT), the data predictive algorithm based on artificial neural network was proposed to guarantee the in tegrity of data in wireless sensor networks. In LEACHDRT algorithm, part of clusters could not finish data acquisition because of lack of round time, and then it leads to data loss. In terms of to characteristics of sensor nodes with spatialtemporal correlativity, al gorithm was introduced in spatialtemporal delay operators into neural networks model and data were predicted with the model. The Berkeley Intel lab's sensor data streams were adopted in simulation as empirical data, the simulation results were predicted with model by Matlab software. Simulation result proved that algorithm achieved ideal effect in predicting consecutive data, and predic tion error stayed at a lower level.
关 键 词:无线传感器网络 LEACH DRT算法 轮时间 数据预测 时空相关性 人工神经网络
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30