检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州师范大学数学与计算机科学学院,贵阳550001
出 处:《计算机应用》2013年第12期3375-3379,共5页journal of Computer Applications
基 金:贵州省科学技术基金资助项目(黔科合J字LKS[2013]29号)
摘 要:为了让多目标粒子群优化算法在运行过程中保持粒子的多样性,提出了一种初始化方法和动态多粒子群协作的多目标优化算法。根据粒子群在决策空间中的分布情况动态增加或者减少粒子群数量;为避免粒子收敛速度过快,改进了决定粒子飞行速度的因素,速度值依赖于粒子当前速度惯性、粒子最优值,群最优值和所有群最优值。用五个测试函数对算法进行了测试并与多目标粒子群优化进行了比较,测试结果表明提出的算法优于多目标粒子群优化算法。To keep the diversity of particles when multi-objective particle swarm optimization is running, a multi- objective optimization algorithm was proposed based on particle swarms initialization and dynamic multiple particle swarms cooperation. The quantity of swarms was increased or decreased dynamically according to the distribution of particle swarms in the decision space. To avoid converging too quickly, the factors, which affected the flying speed of a particle, were improved to depend on the current velocity inertia of the particle, the best value of the particle, the best value of the swarm which the particle belonged to, and the optimal value of all swarms. This algorithm was tested by five benchmark functions and compared with the multi-objective particle swarm optimization. The experimental results indicate that the proposed algorithm is superior to the muhi-obiective particle swarm optimization.
关 键 词:多目标优化 粒子群优化 局部搜索 全局最优解 局部最优解
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.89.50