检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海南琼州学院电子信息工程学院 [2]湘潭大学教务处
出 处:《科学技术与工程》2013年第31期9408-9412,共5页Science Technology and Engineering
基 金:国家自然科学基金项目(61070088)资助
摘 要:利用差分进化算法求解约束优化问题时存在两个关键问题,一是种群个体根据约束处理准则从不可行区域中快速接近可行区域;二是在可行区域内根据约束处理准则如何更好地进行全局搜索。提出了一种基于不可行解比率的差分进化算法求解约束优化问题,算法最主要的特点是利用了种群不可行比率的信息,使种群快速地接近可行区域,并且通过不可行比率选择不同的差分算子,从而完成对约束优化问题的求解,通过对13个benchmark的测试,结果表明所提出的算法是有效的。There are two key points inusing deferential evolution (DE) to solve constrained optimization prob- lems (COPs). The one is the individual of deferential population quickly get near to the feasible area from the non- feasible area. The other involves how to make a global searching in the feasible area according under the constrain- ed condition. Deferential evolution based on the non-feasible rate to solve constrained optimization problems is pro- posed in this paper, constrained optimization principle, which not only instruct to selection operator of DE but also is a guidance to choose different type of deferential operator are designed according to the individual non-feasible rate in the population. 13 benchmark constrain functions are tested in the experiment and it shows that our algo- rithm proposed in this paper is more effectively than other algorithms.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3