工程设计近似计算精度的探索  被引量:1

Exploration on accuracy of approximate computation in engineering design

在线阅读下载全文

作  者:李平乐[1] 李春晖[2] 

机构地区:[1]娄底职业技术学院机电工程系,湖南娄底417000 [2]娄底职业技术学院教务处,湖南娄底417000

出  处:《沈阳工程学院学报(自然科学版)》2013年第4期374-377,共4页Journal of Shenyang Institute of Engineering:Natural Science

摘  要:研究了一个新的积分不等式及它的应用,它具有传统积分近似计算所不具备的高精度特点,介绍了用新的积分不等式求解定积分∫xb=cosx/x3dx的近似值,当积分上限X远离下限b时,不等式的不等程度增大,反之,当X趋近于b时,其不等程度趋于0,也就是说积分区间分得愈细,其积分误差愈小.这样,借助于计算机运算,几乎能将积分的近似值很容易地转换成精确值,无论是什么样的工程设计计算,计算机都能在快速计算的同时大幅度提高近似计算的精度,开创了工程设计计算的新时代.In this paper, we have studied the following integral inequality and its application, which has the advantage over the traditional approximate integration's computation of high- accuracy. The integral inequality is used to figureout approximation of definite integrationdx accurately. The d unequal degree of equations is increasing whilethe upper of integrations X is far away from lower value B. Conversely, when X is set close to B,it approaches zero. In other words, the narrower the region of integration is separated, the less the error is. Therefore, with the help of computer, the approximation of integration can be easily converted into accuracy value. No matter how complicated the engineering design computation is, the computer can figure it out rapidly as well as improve the accuracy simultaneous- ly, which initiates a new a^e of en^ineerino de,~ic^n ~'nmn^Itat^nn

关 键 词:定理 积分不等式 积分区间 精度 

分 类 号:O172.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象