检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2013年第11A期73-76,共4页Computer Science
基 金:国家高技术研究发展计划(863计划)(2011AA09A104)资助
摘 要:螺旋桨参数优化设计一般是复杂的非线性问题,设计的难点在于如何在各种非线性约束条件下找到一组适当的参数,使得螺旋桨性能最佳。群智能算法作为一种新兴演化计算技术,能有效解决全局优化问题,是优化算法研究的新热点。首先介绍了粒子群算法和蜂群算法两种群智能算法的工作原理;然后在建立螺旋桨参数优化数学模型的基础上,将群智能算法运用到螺旋桨初步和终结设计优化问题中,并通过实例进行对比分析,结果表明群智能算法解决螺旋桨参数优化问题是实用且高效的。In general, parameter optimization design of propeller is a nonlinear problem, and the key to the problem is bow to find a set of appropriate parameters under various constraint conditions to make propeller performance best. As a novel evolutionary computation technology, swarm intelligence is now becoming a new research hotspot, and has been successfully applied in many fields. Practice shows that swarm intelligence optimization algorithm is an effective method to solve global optimization problems. In this paper, the principles of particle swarm optimization and artificial bee colo- ny algorithm were introduced. Then on the basis of establishing mathematical model of parameter optimization design of propeller, the swarm intelligence optimization algorithm was employed to solve the problem of parameter optimization design of propeller, and the experimental results indicate that the swarm intelligence optimization algorithm is an effective and potential method for this problem.
关 键 词:群智能 粒子群算法 蜂群算法 螺旋桨参数优化 船舶
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15