真拟弱几乎周期点和拟正则点  被引量:1

Proper quasi-weakly almost periodic points and quasi-regular points

在线阅读下载全文

作  者:王肖义[1] 何伟弘[2] 黄煜[2] 

机构地区:[1]肇庆学院数学与信息科学学院,肇庆526061 [2]中山大学数学与计算科学学院,广州510275

出  处:《中国科学:数学》2013年第12期1185-1192,共8页Scientia Sinica:Mathematica

基  金:国家自然科学基金(批准号:11071263)资助项目

摘  要:T为紧致度量空间X上的连续映射,M(X)为X上所有Borel概率测度.设x∈X,记Mx(T)为概率测度序列{1n∑n 1i=0δTi(x)}在M(X)中的极限点的集合,其中δx表示支撑集是{x}的点测度.记W(T)和QW(T)分别为T的弱几乎周期点和拟弱几乎周期点集.本文证明,如果(X,T)非平凡且满足specifcation性质,则存在x,y∈QW(T)\W(T)(称为真拟弱几乎周期点),分别满足μ∈Mx(T),x∈Supp(μ)和ν∈My(T),y∈/Supp(ν),回答了周作领等提出的公开问题.Mx(T)在弱拓扑中是紧致连通集,所以,要么是单点集,要么是不可数集.如果x∈QW(T)\W(T),则Mx(T)是不可数集.一个自然的问题是,怎么刻画M x(T)是单点集的点x(这时x称为拟正则点).本文给出M x(T)是单点集的充要条件.Let X be a compact metric space and T : X → X be a continuous map. Denote by M(X) the set of all Borel probability measures on X. For x ∈ X, let Mx(T) be the set of all limit points of the sequence 1 n ∑n 1 i=0 δ Ti(x) in M(X), where δx is the atomic probability measure with support {x}. Denote by W(T) and QW(T) the sets of all weakly almost periodic points and quasi-weakly almost periodic points of T, respectively. We proved that if T has specification property, then there exist x, y ∈ QW(T) / W(T), respectively, with the properties that μ ∈ Mx(T), x ∈ Supp(μ) and ν ∈ My(T), y ∈/ Supp(ν). This answers the open problem proposed by Zhou and Feng. On the other hand, it is well known that Mx(T) is a nonempty closed connected subset of M(X) in the weak topology. If x ∈ QW(T) / W(T), Mx(T) will be uncountable. A natural problem is how to characterize the point x with Mx(T) being a singleton. We give a characterization of such x′s.

关 键 词:不变测度 真拟弱几乎周期点 拟正则点 SPECIFICATION 性质 

分 类 号:O189.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象