检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]佛山科学技术学院电子与信息工程学院,佛山528000 [2]佛山科学技术学院信息与教育技术中心,佛山528000
出 处:《计算机与数字工程》2013年第11期1725-1728,共4页Computer & Digital Engineering
基 金:佛山市科技发展专项资金项目(编号:2011AA100061);佛山市产学研专项资金项目(编号:2012HC100272);佛山市智能教育评价指标体系研究项目(编号:DX20120220)资助
摘 要:在基于Stacking框架下异构分类器集成的元学习基础上,将无监督的聚类应用到分类过程中,提出一种基于聚类分析的改进Stacking集成算法。训练样本首先被基分类器分类,随后分类结果被聚类成多个簇,以便分类结果相一致的样本能够被聚集至同一个簇中,同时,将样本特征属性也应用到聚类过程中以增强聚类效果,在每个聚簇内应用C4.5决策树算法提炼决策边界;在分类阶段,首先找出与待分类样本距离最近的聚簇,之后用此聚簇的决策树模型进行分类。实验结果表明,该算法在分类准确性方面有明显优势。On the Stacking framework to construct heterogeneous ensemble meta-learning, a modified version of Stacking based on clus- ter analysis was proposed, applying unsupervised K-means clustering to classification process. Instances from training set are firstly classified by all base classifiers, the classified results are then grouped into a number of clusters, which means that one cluster should contain objects that were correctly/incorrectly classified to the same class by the same group of base classifiers. The algorithm apply the whole instance fea- tures in the clustering process to enhance clustering quality. Next, using C4. 5 algorithm on each cluster to build decision tree, the decision tree on each cluster refines the decision boundaries by learning the subgroups within the cluster. When classifying a new instance, the ap- proach attempts to find the cluster to which it is closest, then uses the decision model on each cluster to make a final decision. Experimental results show that the proposed method outperform individual classifiers, majority voting and classic Stacking method.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.27.125