基于收费数据的高速公路站间旅行时间预测  被引量:12

Highway Travel Time Prediction Between Stations Based on Toll Ticket Data

在线阅读下载全文

作  者:赵建东[1] 王浩[1] 刘文辉[1] 白继根 

机构地区:[1]北京交通大学机械与电子控制工程学院,北京100044 [2]北京云星宇交通工程有限公司,北京100078

出  处:《同济大学学报(自然科学版)》2013年第12期1849-1854,共6页Journal of Tongji University:Natural Science

基  金:"十一五"国家科技支撑计划(2011BAG07B05-2)

摘  要:针对高速公路断面检测数据密度不足现状,采用收费数据预测收费站间车辆旅行时间.研究收费数据实时修正处理方法,改进平均旅行时间计算模型;引入分段线性插值方法构建卡尔曼滤波模型,以减小卡尔曼滤波线性化产生的模型误差问题;依据旅行时间预测业务逻辑开发应用系统,实时主动预测高速公路站间旅行时间.示范路段应用表明,插值后预测算法在正常、事故、小长假3种交通流状态下所有周期平均相对误差控制在10%内,事故周期平均相对误差控制在13%内.插值后算法预测精度有效提高,可为高速公路公众出行提供时间参考.Due to an insufficient section inspection data, toll ticket data were resorted to predicting the travel time between highway toll stations. First, a research was made into a processing method to modify the toll ticket data on real time, and an average travel time calculation model was developed. Then, in order to decrease the model deviation caused by Kalman filter model linearization, a piecewise linear interpolation method was introduced to build the Kalman filter model. Finally, the application system was developed according to the travel time prediction business logic, the system could accurately predict the travel time between highway toll stations on real time. Actual road application shows that the interpolation algorithm can improve travel time prediction accuracy compared to the conventional Kalman filter method in the normal, accident and holiday traffic flow.The relative error of all prediction periods is less than 10%, and the relative error of accident prediction periods is less than 13 %. The prediction accuracy of interpolation algorithm is improved effectively, which can provide an effective time reference for public in highway.

关 键 词:旅行时间 收费数据 分段线性插值 卡尔曼滤波 算法 

分 类 号:U491.1[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象