检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆工商大学机械工程学院,重庆400067 [2]重庆工商大学图书馆,重庆400020
出 处:《食品工业科技》2014年第1期264-269,共6页Science and Technology of Food Industry
基 金:重庆市科委科学技术项目(CSTC2012CX-RKXA00024);重庆市教委科学研究项目(KJ100710);重庆市社科规划项目(2012YBCB055)
摘 要:研究提出了一种改进的计算机视觉识别技术与图像融合算法,并建立脐橙表面损伤识别系统,检测中从图像采集卡获得数字化的图像数据后,经过图像二值化、边缘检测和灰度拉伸处理,再对图像的行灰度均值变化曲线进行分析,加权滤波后提取特征图像,以提高脐橙分选包装的精度和速度。通过实验测试表明:边缘特征检测方法对于模糊图像的处理能力较强,算法设计中的损伤定位加快了系统的处理速度,其检测速度达到了10.5个/s,具有精度高、通用性和稳定性好等特点。In this research an improved computer vision detection technology and image fusion method had been proposed so as to create a navel orange surface damage detection system, i.e.firstly, digitized data in detection was collected from image collection card to be processed through image binarization, edge detection and grey stretch.Then the change curve of image grey-scale average was analyzed. Finally, feature image was extracted after weighted filtering so as to improve the precision and speed of navel orange sorting and packaging. The experiment showed that edge feature detection had strong ability in blurred image processing, and that damage location in algorithm design had speeded up the system processing with 10.5 oranges per second, which was characterized by high precision, generality and good stability.
分 类 号:TS255[轻工技术与工程—农产品加工及贮藏工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.178.138