检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李滨泉[1]
出 处:《浙江科技学院学报》2013年第6期447-457,共11页Journal of Zhejiang University of Science and Technology
基 金:浙江科技学院学科交叉预研专项资助项目(2011JC06Y)
摘 要:引进拓扑学的纽结理论来指导分析纽结带形表皮的设计,首先从分析纽结带形表皮的拓扑学特征入手,提出了纽结类带形表皮和链环类带形表皮设计的造型规律,同时利用琼斯多项式来阐述纽结带形表皮的拓扑同痕不变量,并分别对纽结带形表皮的复杂度,以及纽结带形表皮间的环绕、串联和拼合进行阐述,力求利用拓扑学中纽结理论解决一些建筑纽结带形表皮的设计中所遇到的问题。With the development of architectural technology,the complex knot-shaped skin is adopted in more and more architecture designs.Most architecture designs are limited to the perceptual level because of lack of the systemic theory as direction.Therefore it is necessary to do rational and systemic thinking under the direction of theory.This paper introduces the knots in topology to direct and analyze the design of knot-shaped skin.Firstly,the paper starts with analyzing the topological characteristics of knot-shaped skin to put forward the regularity of mold-making about knot-shaped skin and link-shaped skin.Secondly,it uses Jones' multinomial to explain invariant with identical track of knot-shaped skin in topology.Then,it sets forth complexity of knot-shaped skin and surrounding,connecting and splicing among knot-shaped skins.We try to use topology of knot theory to solve some problems encountered in the design of construction of knot-shaped skin.
关 键 词:拓扑学 纽结理论 拓扑同痕 纽结类带形表皮 链环类带形表皮 环绕
分 类 号:TU201.1[建筑科学—建筑设计及理论] TU12
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.192.32