无限阶矩阵李代数余伴随表示的刻画  

Description on Coadjoint Representations of an Infinite Matrix Algebra

在线阅读下载全文

作  者:张彦芳[1] 王宪栋[1] 周敏[1] 

机构地区:[1]青岛大学数学科学学院,青岛266071

出  处:《青岛大学学报(自然科学版)》2013年第4期36-38,共3页Journal of Qingdao University(Natural Science Edition)

基  金:国家自然科学基金(批准号:11171021)资助

摘  要:设M∞()是C上所有无限阶矩阵构成的向量空间,gl(∞)是M∞()的一个特殊子空间,关于括积运算gl(∞)是一个李代数。对gl(∞)的李子代数g,令g*是g的对偶空间,g+是g的受限对偶空间。定义了g在g*上的余伴随作用,使其成为g-模,g+是g*的g-子模。证明了gl(∞)中存在子空间W,作为g-模,它与g+同构。Let M(∞) be the vector space of all the infinite matrices on C,gl(∞) is a special subspace of M(∞).Product and bracket are defined on gl(∞),and it is proved that gl(∞) is a Lie Algebra over C.Let g be the Lie subalgebra of gl (∞),g* be the dual space of g and g+ be the limited dual space of g.The coadjoint action of g on g* is defined,making g* into g-module,and g+ is a g-submodule of g*.It is proved that there exits a subspace W of gl(∞),which is a g-module and isomorphic to g+.

关 键 词:无限阶矩阵 李代数 余伴随作用 

分 类 号:O152.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象