检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]淮阴工学院,江苏淮安223003
出 处:《计算机仿真》2014年第1期383-387,共5页Computer Simulation
基 金:国家星火计划资助项目(2011GA690190);江苏省高校自然科学基金项目资助(11KJD520003)
摘 要:为了尽可能地缩小疑似火焰区域,提高火灾检测的准确性和实时性,提出了把图像运动目标检测应用于火焰检测的问题。首先使用背景减除法提取运动目标,然后使用基于连通区域的面积阈值精确地提取疑似区域和其轮廓,再依据早期火灾的视觉特征,抽取四个特征量,即:相邻帧红色比重平均增长率、面积变化率、形状的平均相似度和圆形度,最后通过SVM融合这些特征量进行综合判别。实验结果表明,上述方法计算速度快,检测效果好,误判率低,具有良好的抗干扰能力,为图像目标优化控制提供了依据。In order to reduce the suspected flame area as much as possible, improve the accuracy and real-time character of the fire detection, this paper proposed the thought that the moving target detection is applied to flame de- tection. First, the movement regions were extracted using background subtraction method. Then the flame' s suspec- ted region and its contour were accurately extracted using the area threshold based on connected region. And then ac- cording to the early fire' s visual characteristic, four features were extracted, namely: red proportion average rate of increase, area rate of increase, average similar degree of form and the value of round scale of adjacent frames. Final- ly, these features were fused by SVM to detect the fire. The experiment resuhs show the algorithm is of high efficien- cy, good detection effect, low misjudgment rate and good anti-interference capability.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.247.141