检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《机器人》2000年第6期482-489,共8页Robot
基 金:86 3项目!(86 3- 5 12 - 980 5 - 18);国家自然科学基金!(6 98895 0 1)
摘 要:本文研究了机器人足球赛中利用增强学习进行角色分工的问题 ,通过仿真试验和理论分析 ,指出文 [1]中采取无限作用范围衰减奖励优化模型 ( infinite- horizon discounted model)的 Q学习算法对该任务不合适 ,并用平均奖励模型 ( average- reward model)对算法进行了改进 ,实验表明改进后学习的收敛速度以及系统的性能都提高了近一倍 .In this paper, the role diversity based on reinforcement learning in robot soccer is studied. Through simulation and analysis, it is shown that the Q algorithm infinite horizon discounted model in \ is not suitable to this task. Instead of that, average reward model is used for improving the algorithm. Simulation experiments show that the convergence rate in learning and the system performance are twice increased after improvement.
分 类 号:TP249[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.211