一种基于改进粒子滤波的运动目标跟踪  被引量:6

Moving Target Tracking Based on Improved Particle Filter

在线阅读下载全文

作  者:李志[1] 谢强[1] 

机构地区:[1]南京航空航天大学计算机科学与技术学院,南京210016

出  处:《计算机科学》2014年第2期232-235,252,共5页Computer Science

摘  要:基于传统粒子滤波的运动目标跟踪方法中存在重要密度函数选择困难、缺乏通用性、重采样设计难度大、粒子退化现象难以有效解决等问题。因此提出了一种改进的粒子滤波运动目标跟踪方法,该方法采用人工鱼群算法改进重要密度函数,通过粒子间的不断交互及协调行为,使其状态接近后验分布,从而提高重要密度函数的通用性。在此基础上,结合人工免疫算法的免疫算子改进重采样,平衡粒子群的收敛性和多样性,抑制早熟现象。实验结果表明,与传统粒子滤波算法相比,该方法通过参数调节,提高了运动目标跟踪的准确性和抗干扰能力,并能有效地抑制粒子退化现象。In the target tracking method based on traditional particle filter, the importance density function is difficult to select and lack of versatility, and the re-sampling method is difficult to design to solve the particle degradation phenome- non effectively. Therefore, a moving target tracking method based on improved particle filter, using artificial fish swarm algorithm,was proposed to improve the importance density function. Particles interact and coordinate their behavior constantly, making the state of particles close to the posterior distribution, and improve the versatility of the importance density function. On this basis, in order to improve re-sampling method and suppress premature phenomenon, the parti- cle swarm convergence and diversity are balanced by the immune operators of artificial immune algorithm. Experimental results show that compared with traditional particle filter algorithm, moving target tracking accuracy and anti-interfe- rence ability are improved and the particle degradation phenomenon is suppressed effectively by adjusting the parame- ters of the present algorithm.

关 键 词:粒子滤波 重要密度函数 重采样 人工鱼群 人工免疫 运动目标跟踪 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象