检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:严晓明[1]
机构地区:[1]福建师范大学数学与计算机科学学院,福州350117
出 处:《计算机系统应用》2014年第2期128-132,共5页Computer Systems & Applications
基 金:福建省教育厅B类基金(JB11036)
摘 要:本文提出了一种改进的KNN分类算法,利用样本集合中同类别样本点间距离都十分接近的特点辅助KNN算法分类.将待分类样本点的K个最近邻样本点分别求出样本点所属类别的类别平均距离和样本点与待分类样本点距离的差值比,如果大于一个阈值,就将该样本点从K个最近邻的样本点中删除,再用此差值比对不同类别的样本点个数进行加权后执行多数投票,来决定待分类样本点所属的类别.改进后的KNN算法提高了分类的精度,并且时间复杂度与传统KNN算法相当.In this paper, an improved KNN classification algorithm is proposed by using characteristics that the points distributed in the same category of sample collection are in close distance as an assistant to classify KNN algorithm. The way to deal with the k-nearest neighboring sample points is calculating the average distance between categories that the sample points belong to and the differences of unspecified sample points respectively. If the data calculated is greater than a certain threshold, delete this sample point from k-nearest neighboring samples, then determine the categories of unspecified sample points through majority voting. The improved KNN algorithm enhances the precision of classification and maintains the same time complexity as the traditional KNN algorithm.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222