检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴鸿宇
机构地区:[1]河海大学计算机及信息学院,江苏南京211100
出 处:《电子测试》2013年第12期37-42,共6页Electronic Test
摘 要:本文结合几种现有的人脸识别特征提取算法,先对人脸图像进行小波分解去噪;然后通过离散余弦变换对低频分量作进一步特征提取和压缩,保留人脸图像中对光照、姿态、表情变化不敏感的识别信息;接着利用PCA和LDA相结合得到最终的识别特征;最后采用欧式距离和最近邻分类器识别人脸。实验采用ORL标准人脸库验证了这种组合的有效性。This article combines several existing feature extraction algorithms for face recognition. Firstly, face images are decomposed by using wavelet transform, in which some noises have been removed from the images. Then, discrete cosine transform is used on low frequency components to get further feature extraction and compression, which is not sensitive to light, gesture or facial expression. After that, a combination of PCA and LDA is conducted to obtain final face features. Finally, Euclidean distance and the minimum distance classifier are used to perform face recognition. Simulation experiments based on ORL show a better recognition rate in this combination.
关 键 词:人脸识别 离散小波变换(discrete wavelet TRANSFORM DWT) 离散余弦变换(discrete COSINE TRANSFORM DCT) 主成分分析(principal component analysis PCA) 线性判别分析(1inear discriminant analysis LDA)
分 类 号:TN919.81[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.227.158