检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学计算机与通信学院,兰州730050
出 处:《计算机工程与应用》2014年第1期195-199,共5页Computer Engineering and Applications
基 金:甘肃省自然科学基金(No.1014RJZA009;No.1112RJZA029);甘肃省高等学校基本科研业务费项目(No.1114ZTC144)
摘 要:LPP算法是无监督算法,并没有考虑到不同类别的样本对分类效果的影响,结果会造成不同类数据点的重叠,故所获得的子空间对于分类问题来说未必是最优的。提出一种新的基于监督判别局部保持投影(SDLPP)的表情识别算法。利用样本的类别信息重新构造LPP算法中的相似矩阵,然后在目标函数中增加类间散度约束,这样就会在保持样本点局部结构的同时,使不同类的样本点相互远离,从而得到更具有判别性的表情特征。该算法在识别率上比其他方法都有较大提高,通过在JAFFE表情库上的实验验证了其有效性。Locality Preserving Projection(LPP)algorithm is unsupervised, which does not take into account the impact on different classes of samples on the classification effect and results in the overlap of the data points for different classes, so the sub-space for classification problems may not be optimal. This paper proposes a new expression recognition algorithm based on Supervised Discriminative Locality Preserving Projection(SDLPP). The algorithm firstly makes use of the classi-fication information of samples to reconstruct the similarity matrix of LPP, and then adds between-class scatter constraint into the objective function. This will make sample points of different classes away from each other when preservers them in local structure, so as to get more discriminative expression feathers. The method improves recognition rate than others, and the results of the experiments on JAFFE database indicate that it is effective.
关 键 词:局部保持投影 有监督学习 类间散度约束 表情识别 LOCALITY PRESERVING Projection(LPP)
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145