Store-operated calcium entry in neuroglia  被引量:2

Store-operated calcium entry in neuroglia

在线阅读下载全文

作  者:Alexei Verkhratsky Vladimir Parpura 

机构地区:[1]Faculty of Life Sciences, The University of Manchester [2]Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science 48011, Bilbao, Spain [3]and Department of Neurosciences, University of the Basque Country UPV/EHU [4]Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology aboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama [5]Department of Biotechnology, University or Rijeka

出  处:《Neuroscience Bulletin》2014年第1期125-133,共9页神经科学通报(英文版)

基  金:supported by an Alzheimer’s Research Trust(UK)Programme Grant(ART/PG2004A/1)to A.V.;by a National Science Foundation grant(CBET 0943343)to V.P

摘  要:Neuroglial cells are homeostatic neural cells. Generally, they are electrically non-excitable and their activation is associated with the generation of complex intracellular Ca^2+ signals that define the "Ca^2+ excitability" of glia. In mammalian glial cells the major source of Ca^2+ for this excitability is the lumen of the endoplasmic reticulum (ER), which is ultimately (re)filled from the extracellular space. This occurs via store-operated Ca^2+ entry (SOCE) which is supported by a specific signaling system connecting the ER with plasmalemmal Ca^2+ entry. Here, emptying of the ER Ca^2+ store is necessary and sufficient for the activation of SOCE, and without Ca^2+ influx via SOCE the ER store cannot be refilled. The molecular arrangements underlying SOCE are relatively complex and include plasmalemmal channels, ER Ca^2+ sensors, such as stromal interaction molecule, and possibly ER Ca^2+ pumps (of the SERCA type). There are at least two sets of plasmalemmal channels mediating SOCE, the Ca2*-release activated channels, Orai, and transient receptor potential (TRP) channels. The molecular identity of neuroglial SOCE has not been yet identified unequivocally. However, it seems that Orai is predominantly expressed in microglia, whereas astrocytes and oligodendrocytes rely more on TRP channels to produce SOCE. In physiological conditions the SOCE pathway is instrumental for the sustained phase of the Ca^2+ signal observed following stimulation of metabotropic receptors on glial cells.Neuroglial cells are homeostatic neural cells. Generally, they are electrically non-excitable and their activation is associated with the generation of complex intracellular Ca^2+ signals that define the "Ca^2+ excitability" of glia. In mammalian glial cells the major source of Ca^2+ for this excitability is the lumen of the endoplasmic reticulum (ER), which is ultimately (re)filled from the extracellular space. This occurs via store-operated Ca^2+ entry (SOCE) which is supported by a specific signaling system connecting the ER with plasmalemmal Ca^2+ entry. Here, emptying of the ER Ca^2+ store is necessary and sufficient for the activation of SOCE, and without Ca^2+ influx via SOCE the ER store cannot be refilled. The molecular arrangements underlying SOCE are relatively complex and include plasmalemmal channels, ER Ca^2+ sensors, such as stromal interaction molecule, and possibly ER Ca^2+ pumps (of the SERCA type). There are at least two sets of plasmalemmal channels mediating SOCE, the Ca2*-release activated channels, Orai, and transient receptor potential (TRP) channels. The molecular identity of neuroglial SOCE has not been yet identified unequivocally. However, it seems that Orai is predominantly expressed in microglia, whereas astrocytes and oligodendrocytes rely more on TRP channels to produce SOCE. In physiological conditions the SOCE pathway is instrumental for the sustained phase of the Ca^2+ signal observed following stimulation of metabotropic receptors on glial cells.

关 键 词:calcium signaling ASTROCYTE OLIGODENDROCYTE microglia store-operated calcium entry TRP STIM ORAI 

分 类 号:R338[医药卫生—人体生理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象