检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《浙江大学学报(工学版)》2013年第12期2188-2194,共7页Journal of Zhejiang University:Engineering Science
摘 要:采用广义回归神经网络(GRNN)对3种直升机旋翼故障(配平调整片误调、变距拉杆误调、质量不平衡)进行识别.采用三层网络分别识别旋翼故障的类型、位置和程度.网络训练集和测试集采用基于耦合的旋翼-机身仿真结果(包含故障旋翼响应、桨毂载荷、机身振动水平).为提高网络泛化能力,在仿真结果中添加了噪声.结果表明:1)训练好的GRNN能从包含噪声的直升机响应中对故障做出识别,使用仿真数据训练的GRNN可用于旋翼健康和使用监测系统(HUMS)的开发;2)使用包含噪声的数据训练网络能显著提升GRNN的泛化能力;3)合理选择网络扩展常数对于预测准确性非常重要.General regression neural network(GRNN)was used to diagnose three types of rotor system faults,namely,misadjusted trim-tab,misadjusted pitch control rod,and imbalanced mass.Three cascaded levels of networks were used to identify fault type,location,and extend,respectively.Simulation results, which include faulty rotor responses,hub loads,and fuselage vibration,from a coupled rotor-fuselage analytical model were used for training and testing.Artificial noises were added to simulation data to enhance network generality.Results show that:1)trained GRNN is capable of diagnosing faults from noisy helicopter responses,which indicating the feasibility of simulation data-trained GRNN being used in rotor health and usage monitoring system(HUMS)development;2)using noise-added training data can significantly improve GRNN's generality;3)properly selecting the spread of network is important for fault diagnosis accuracy.
关 键 词:广义回归神经网络 旋翼系统 故障识别 健康和使用监测系统
分 类 号:V275.1[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117