基于仿真数据的旋翼系统故障识别  被引量:4

Rotor system fault diagnosis based on simulation data

在线阅读下载全文

作  者:杨茂[1] 李小龙[1] 

机构地区:[1]西北工业大学航天学院,陕西西安710072

出  处:《浙江大学学报(工学版)》2013年第12期2188-2194,共7页Journal of Zhejiang University:Engineering Science

摘  要:采用广义回归神经网络(GRNN)对3种直升机旋翼故障(配平调整片误调、变距拉杆误调、质量不平衡)进行识别.采用三层网络分别识别旋翼故障的类型、位置和程度.网络训练集和测试集采用基于耦合的旋翼-机身仿真结果(包含故障旋翼响应、桨毂载荷、机身振动水平).为提高网络泛化能力,在仿真结果中添加了噪声.结果表明:1)训练好的GRNN能从包含噪声的直升机响应中对故障做出识别,使用仿真数据训练的GRNN可用于旋翼健康和使用监测系统(HUMS)的开发;2)使用包含噪声的数据训练网络能显著提升GRNN的泛化能力;3)合理选择网络扩展常数对于预测准确性非常重要.General regression neural network(GRNN)was used to diagnose three types of rotor system faults,namely,misadjusted trim-tab,misadjusted pitch control rod,and imbalanced mass.Three cascaded levels of networks were used to identify fault type,location,and extend,respectively.Simulation results, which include faulty rotor responses,hub loads,and fuselage vibration,from a coupled rotor-fuselage analytical model were used for training and testing.Artificial noises were added to simulation data to enhance network generality.Results show that:1)trained GRNN is capable of diagnosing faults from noisy helicopter responses,which indicating the feasibility of simulation data-trained GRNN being used in rotor health and usage monitoring system(HUMS)development;2)using noise-added training data can significantly improve GRNN's generality;3)properly selecting the spread of network is important for fault diagnosis accuracy.

关 键 词:广义回归神经网络 旋翼系统 故障识别 健康和使用监测系统 

分 类 号:V275.1[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象