检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张爱红[1] 周培[1] 申铜倩[2] 彭志行[2] 陈峰[2]
机构地区:[1]江苏省如东县疾病预防控制中心,226400 [2]南京医科大学公共卫生学院流行病与卫生统计学系
出 处:《中国卫生统计》2014年第1期68-69,73,共3页Chinese Journal of Health Statistics
基 金:"十二五"国家科技重大专项(2011ZX10004-902);江苏省自然科学基金重点项目(BK2010079);江苏省科教兴卫工程(ZX201109);江苏省高校优势学科建设资助项目
摘 要:目的探讨应用乘积季节自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)预测如东县食源性疾病发病的可行性,为食源性疾病的预防和控制提供依据。方法基于2004年1月至2010年12月食源性疾病人数建立乘积季节ARIMA模型,用2011年食源性疾病资料验证模型的预测效果,用所得模型预测2012年食源性疾病发病人数。结果 ARIMA(0,1,1)×(0,1,1)12较好地拟合了既往时间段食源性疾病发病人数的时间序列,拟合平均相对误差为2.7%,预测2012年如东县食源性疾病发病总人数为64人。结论乘积季节ARIMA模型可以较好地拟合食源性疾病的时间变化趋势,并用于预测未来的食源性疾病,是一种短期预测精度较高的预测模型。Objective To explore the feasibility for application of autoregressive integrated moving average (ARIMA) model to predict incidence of foodbome diseases in Rudong County and to provide scientific basis for the prevention and control of foodborne diseases. Methods Multiplicative seasonal ARIMA model was established based on the monthly foodborne disea- ses in Rudong from 2004 to 2010 ,and used foodbome diseases data of 2011 to verify the effect of model forecasting. The food- borne diseases in 2012 were predicted by ARIMA model based on the foodborne diseases from 2004 to 2010. Results Multi- plicative seasonal ARIMA (0,1,1) x (0,1,1) 12 better fit the trends of the number in previous time periods and series, with the mean of prediction fitting relative error of 2.7%. The number of foodborne disease in Rudong in 2012 was predicted to be 64. Conclusion Multiplicative seasonal ARIMA model can be used to fit the changes of foodborne diseases and to forecast the fu- ture foodborne disease. It is a predicted model of high precision for short time forecast.
关 键 词:乘积季节自回归求和移动平均模型 预测 食源性疾病
分 类 号:R155.5[医药卫生—营养与食品卫生学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80