检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张平正[1]
出 处:《江苏理工大学学报(自然科学版)》2001年第1期89-91,共3页Journal of Jiangsu University of Science and Technology(Natural Science)
基 金:江苏理工大学青年基金
摘 要:利用Lyapunov泛函方法 ,讨论了一类二阶非线性泛函微分方程x″(t) +φ(x′(t) ,t) +f(x(t-r(t) ) ) =0解的渐近稳定性 ,基于|x′(t) |积分的下半有界性 ,得到关于x′(t)的主要引理 ,改进了 φ(x′(t) ,t) /x′(t)积分上界、下界的条件 ,得到了一些新结果 ,推广了方程在线性、非线性、常时滞。By using the method of Lyapunov functional, the asymptotic stability of a class of nonlinear second order functional differential equation x″(t)+φ(x′(t),t)+f(x(t-r(t))) =0 is studied. Based on the lower boundness of the integral of |x′(t)|, a main lemma about x′(t) is obtained. The lower and upper bound of the ingegrals of φ(x′(t), t)/x′(t) are improved. Some new results are obtained. Some related results about the equation of linear, nonlinear, constant delay are generalized.
关 键 词:泛涵方程 渐近稳定性 LYAPUNOV泛函 二阶非线性泛涵微分方程
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15