检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]晋中学院机械学院,山西晋中030600 [2]中北大学机械与动力工程学院,太原030051 [3]河北联合大学轻工学院,河北唐山063000
出 处:《机械设计与研究》2014年第1期101-104,110,共5页Machine Design And Research
基 金:国家自然科学基金资助项目(51175480)
摘 要:提出了一种基于粗糙集属性约简技术的测点优化配置方法。首先根据齿轮箱的故障机理确定了基本测点,采用粗糙集理论建立了测点优化决策表;然后提出了采用基于属性频率的差别矩阵法求取最小属性约简集,避免了复杂的布尔运算;最后通过对约简集进行分析找到了有效的信号监测点,并且应用BP神经网络进行了仿真验证。实验结果表明该方法不需要对监测对象建模,也不需要进行动力学分析,而是根据时频域指标与故障种类之间的关联程度选择有效监测点,通过监控有效监测点,采集有效故障信息,有利于提高故障诊断的效率和准确率。A method based on attributes reduction technology is proposed to configure the measuring points. First, three monitoring points were chosen according to the gearbox fault mechanism and the decision table was established. Then a method based on the discernibility matrix and attribute frequency was put forward to get the minimal attribute reduction sets without the complex boolean operations. Finally, the most sensitive measuring point was achieved through analyzing the final reduction sets and the simulation was carried out through BP neural network. The experiment results show that the attribute reduction technology needs neither modeling for the monitoring object nor dynamics analysis, but selects the effective sampling point directly according to the relationship between the parameters and fault types. Monitoring the effective measuring point and collecting the fault information would improve the efficiency and accuracy of fauh diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15