导数小片插值恢复技术与超收敛性  被引量:13

THE DERIVATIVE PATCH INTERPOLATING RECOVERY TECHNIQUE AND SUPERCONVERGENCE

在线阅读下载全文

作  者:张铁[1] 

机构地区:[1]东北大学数学系,沈阳110006

出  处:《计算数学》2001年第1期1-8,共8页Mathematica Numerica Sinica

基  金:教育部高校骨干教师基金

摘  要:A derivative patch interpolating recovery technique is analyzed for the finite element interpolation operator of projection type and the two-point boundary value problems. It is shown that the convergence rate of the recovered derivative admits superconvergence on the recovered subdomain, and is two order higher than the optimal global convergence rate at each internal nodal point when even order finite element spaces and local uniform meshes are used.A derivative patch interpolating recovery technique is analyzed for the finite element interpolation operator of projection type and the two-point boundary value problems. It is shown that the convergence rate of the recovered derivative admits superconvergence on the recovered subdomain, and is two order higher than the optimal global convergence rate at each internal nodal point when even order finite element spaces and local uniform meshes are used.

关 键 词:有限元 导数恢复 超收剑性 后验误差估计 导数小片插值恢复技术 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象