基于朴素贝叶斯分类模型的文本特征选择研究  

在线阅读下载全文

作  者:潘光强[1] 周军[1] 何洋[1] 

机构地区:[1]国防科学技术大学,湖南长沙410073

出  处:《电脑知识与技术》2014年第1期133-137,共5页Computer Knowledge and Technology

摘  要:该文主要对文本自动分类的特征选择方法进行了讨论,分析了几种常见方法存在的缺陷,指出影响出文本特征选择的两个重要因素--特征项在类别内的文档频率和在类别间的分布差异,并以这两个因素为影响因子分别对TF-IDF和IG方法进行了改进。另外还介绍了朴素贝叶斯分类模型,并基于此模型对改进的特征选择方法的分类效果进行评估。实验结果表明,改进后的方法能够强化特征项在特定类别中的影响力,提高文本分类效果。

关 键 词:文本分类 特征选择 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象