检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐盛桓[1]
机构地区:[1]天津外国语大学,天津300192
出 处:《山东外语教学》2014年第1期8-15,共8页Shandong Foreign Language Teaching
基 金:国家社科基金项目"心智哲学视域下的英语辞格系统及生成机制研究"(项目编号:13BYY155)的阶段性成果
摘 要:对视觉隐喻进行拓扑性质的研究和分析是隐喻研究的一个新课题。视觉隐喻指其本体和喻体都能用视觉器官感知的那些隐喻;拓扑性质指拓扑学所说的平面几何图形在连续变换下保持不变这一性质。隐喻的一个特征表现为"本体域是喻体域",即喻体对于本体具有拓扑性质的不变性;喻体与本体是同胚的和共相的,这就体现了隐喻在变换下保持不变这一性质。共相表现为本体与喻体是相同、相似、相应或相关的;从观察可知,这同德国数学家克莱因根据变换群在"爱尔朗根计划"提出的对几何作出的分类:欧几里得几何、仿射几何、射影几何、拓扑几何所发生的变换大体是对应的。Topological approach to visual metaphor is a new way to deal with metaphor. Visual metaphor refers to the kind of metaphor in which both the tenor and the vehicle are perceptual objects perceived by ocular organ. To-pologieal nature refers to the kind of property of spatial objects which shows invariance over continuous transforma- tion. The topological nature of metaphor is realized in the formula of 'Target (domain) is source (domain) ' , that is , the tenor and the vehicle are in a state of homomorphism and constitute a pair of universals, which demonstrate the states, respectively, of sameness, similarity, correspondence, and relevance. This will bring about to the meta- phor the property of invariance over transformation. These four states of universal are somewhat in correspondence to the four types of transformation in Euclidean geometry, affine geometry, projective geometry, and topological geom- etry, the classification of which was based on transformation group suggested by F. Klein in his famous Erlangen Program.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195