基于鲁棒M估计和Mean Shift聚类的动态背景下运动目标检测  被引量:6

Detection of Moving Objects in Dynamic Scenes Based on Robust M-estimator and Mean Shift Clustering

在线阅读下载全文

作  者:徐诚[1] 黄大庆[1,2] 

机构地区:[1]南京航空航天大学电子信息工程学院,南京210016 [2]南京航空航天大学无人机研究院,南京210016

出  处:《光子学报》2014年第1期136-141,共6页Acta Photonica Sinica

基  金:国家自然科学基金(No.61106018);航空科学基金(No.20115552031)资助

摘  要:针对动态背景下运动目标的检测问题,提出了一种基于鲁棒M估计和Mean Shift聚类的目标检测新方法。首先,在考虑全局光照变化的情况下,构建鲁棒M估计器估计全局运动,以实现最小化相邻2帧图像中所有像素亮度的绝对残差和,根据M估计得到像素点权值,提取出代表局部运动信息的离群点;在离群点中均匀抽取网格点,然后利用Mean Shift聚类算法实现不同运动点的分割;根据聚类的结果生成凸包,准确分割出运动目标区域。实验结果表明,该方法能检测出动态背景下的多个运动目标区域,多目标检测准确度到达95%以上,并且只需两帧图像就可以准确检测并锁定运动目标,满足实时处理的要求,具有一定的工程意义.Focusing on the problem of moving objects detection in dynamic scenes, a novel algorithm based on robust M-estimator and mean shift clustering was proposed. First, considering the case of global illumination change, M-estimator was constructed to estimate the global motion in order to minimize the absolute residuals of pixels luminance between two adjacent frames. The structured outliers could be extracted according to the weight map of every pixel. Then the grid points were selected evenly from outliers and different point belong different moving object was clustered by mean shift algorithm. The convex hulls were generated under clustering results, to accurately segment the moving object regions. Experimental results show that this method can accurately detect multiple moving objects in dynamic scenes, and MODA can reach 95%. Besides, only two frames are needed to detect and lock the moving objects by this algorithm, which can meet real-time processing requirements and has a certain degree of engineering significance.

关 键 词:运动目标检测 动态背景 鲁棒M估计 Mean Shift聚类 凸包 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象