检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗平[1] 向凤红[1] 毛剑琳[1] 迟子铖 付丽霞[1] 徐驰[1]
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500
出 处:《计算机应用研究》2014年第4期1144-1146,1150,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61074145);云南省应用基础研究基金资助项目(2009ZC050M)
摘 要:针对Taylor算法进行TDOA定位时,其初始估计位置的误差易导致Taylor算法不收敛和定位精度差的问题,提出一种基于自然选择的线性递减权重粒子群优化(W-SPSO)与Taylor算法协同定位的方法。该方法先通过W-SPSO算法得到一个初始估计位置(x,y),再通过Taylor算法在(x,y)处进行迭代运算得到最终定位结果。不同噪声情况下的仿真结果显示:W-SPSO与Taylor算法协同定位方法对MS坐标估计值的均方差(RMSE)小于标准PSO(粒子群优化)、SelPSO(基于自然选择的粒子群优化算法)、W-SPSO、Taylor以及Chan五种算法的RMSE。因此,所提出的定位方法在保留了SelPSO算法求解精度和收敛性的基础上,同时提高了全局搜索能力,使其具有更高的定位精度和收敛性。When Taylor algorithm was used for TDOA positioning, the initial estimated position error easily led to the Taylor algorithm does not converge and the shortcomings of low positioning accuracy. To solve this problem, this paper proposed a co- located positioning method, which was based on natural selection linear decreasing weight particle swarm optimization algo- rithm (W-SPSO) and Taylor algorithm. This method used W-SPSO to get an initial estimated position (x, y), and then got the final position by iterative calculation of Taylor algorithm at the (x, y). Simulation results in different noise shows that the RMSE(the mean square error of the estimates coordinates ) of the co-location method is less than that of standard PSO(parti- cle optimization algorithm) ,SelPSO (particle optimization algorithm based on natural selection) ,W-SPSO,Taylor and Chan al- gorithms. Therefore, the co-location method retains solution accuracy and convergence of SelPSO algorithm, while improving the global search capability, the co-location method has higher positioning accuracy and convergence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249