基于自适应最优聚类的目标匹配跟踪算法  被引量:1

Target Matching Tracking Algorithm Based on Adaptive Optimal Clustering

在线阅读下载全文

作  者:崔雄文[1,2] 吴钦章[1] 蒋平[1] 周进[1] 

机构地区:[1]中国科学院光电技术研究所,成都610209 [2]中国科学院大学,北京100039

出  处:《半导体光电》2014年第1期95-99,共5页Semiconductor Optoelectronics

基  金:国家"863"计划项目(G107302)

摘  要:提出了一种基于新的自适应最优聚类的模板匹配跟踪方法。利用模式分类准则计算最优聚类数,然后根据最优聚类数采用k-均值方法进行多次聚类。根据聚类结果计算熵矢量和距离矢量,组合得到特征矢量,利用特征矢量进行匹配跟踪。匹配采用简单的相似性准则,实时模板更新算法为多模更新。测试结果表明,该算法针对不同的目标能自适应地选择聚类参数,在目标发生几何变化时,能实现精确稳定的跟踪。A new template matching algorithm was proposed to solve the problem of tracking targets with attitudes changing violently. It applied k-means algorithm to make multiple clustering based on the optimal number of clusters which was calculated with pattern classification criteria. The features vector for matching tracking by combining the entropy vector with the distance vector, both of which were calculated according to the clustering result. It adopted a simple similarity criterion to realize matching, while used a multimode updating algorithm to update real-time reference template. Experimental results certificate the new algorithm is able to calculate the number of clusters adaptively. Additionally, the new algorithm is able to track geometrically changing targets precisely and stably.

关 键 词:模板匹配 K-均值聚类 模式分类准则 信息熵 几何变化 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象