检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘宗序[1] 禹晶[1] 胡少兴[2] 孙卫东[1]
机构地区:[1]清华大学电子工程系,北京100084 [2]北京航空航天大学机械工程与自动化学院,北京100083
出 处:《自动化学报》2014年第4期594-603,共10页Acta Automatica Sinica
基 金:国家自然科学基金(61171117);国家科技支撑计划项目(2012BAH31B01);北京市教育委员会科技计划重点项目(KZ201310028035)资助~~
摘 要:多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率.Multi-scale structural self-similarity refers to those similar structures either within the same scale or across different scales coming h'om the same image, which widely occur in remote sensing images. In this paper, we propose a single image super resolution (SR) method based on multi-scale structural self-similarity, which combines compressive sensing framework and structural self-similarity. In our method, the nonlocal and the pyramid-based K-SVD methods are used to add the extra information hidden in multi-scale structural self-similarity into the reconstructed image in the compressive sensing framework. The advantage of our method is that it only uses a single low-resolution image to promote spatial resolution by fully exploiting the extra information hidden in the image itself. Experimental results demonstrate that our method can improve spatial resolution more effectively compared with the CSSS and the ASDSAR methods.
关 键 词:超分辨率 结构自相似性 多尺度 压缩感知 非局部方法
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43