不确定环境下基于鲁棒粒子群优化的物流射频识别网络优化  被引量:3

Logistics radio-frequency-identification network optimization based on robust particle-swarm-optimization under uncertain conditions

在线阅读下载全文

作  者:李军军[1,2] 黄有方[2] 吴华锋[1] 肖英杰[1] 

机构地区:[1]上海海事大学商船学院,上海201306 [2]上海海事大学科学研究院,上海201306

出  处:《控制理论与应用》2014年第3期319-326,共8页Control Theory & Applications

基  金:国家自然科学基金资助项目(51279099);上海市科学技术委员会基金资助项目(12ZR1412500);上海市教委科研创新基金重点资助项目(13ZZ124);上海市教育委员会和上海市教育发展基金会"曙光计划"基金资助项目(12SG40);交通运输部应用基础研究资助项目(2013329810300)

摘  要:针对电子标签位置不确定的物流射频识别(radio frequency identification,RFID)网络优化问题,综合考虑覆盖率、负载平衡程度、成本,建立了鲁棒优化模型.为求解负载平衡程度,采用基于Korobov点阵的蒙特卡洛方法.为减少计算量,提高算法寻优能力,提出一种基于不对称时变S–形(Sigmoid)函数的鲁棒粒子群算法(PSO).样本规模仅取部分较小整数、部分较大整数.仅在算法迭代后期,样本规模期望值大,保证算法开发精度;在较多迭代次数中,样本规模期望值小,加快算法探索速度.仿真实验表明,该方法具有较佳的搜索性能.To deal with the logistics radio-frequency-identification (RFID) network optimization problem when the position of the electronic tag is uncertain,we build a robust optimization model in which the coverage rate,the load balance and the cost is considered.The Monte Carlo method based on Korobov Lattice is applied to calculate the load balance.A sort of robust particle swarm optimization (PSO) algorithm based on asymmetrical time-varying sigmoid function is put forward to reduce the computation complexity and enhance the searching ability.Only some small integers and large integers are employed for the sample size.In the anaphase of the algorithm,the expected value of sample size is large,thus the exploitation precision is ensured.In most other iterations,the expected value of sample size is small,thus the exploration speed is accelerated.Simulation results show that this method possesses better searching ability.

关 键 词:射频识别 网络优化 不确定 鲁棒 粒子群优化 

分 类 号:TP391.45[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象