检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学信号与信息处理重庆市重点实验室,重庆400065
出 处:《重庆邮电大学学报(自然科学版)》2014年第2期243-247,共5页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:国家自然科学基金(61102131);重庆市自然科学基金(CSTC;2010BB2411)~~
摘 要:红外行人检测在夜间智能视频监控,车辆安全驾驶等领域有重要应用。为了解决红外图像特征降维后空间结构信息丢失的问题,提出一种基于广义二维主分量分析(principal component analysis,PCA)和稀疏表示的红外图像行人目标检测算法。该算法主要由2个阶段组成:第1阶段利用广义二维主分量分析方法提取图像的二维主特征分量,并由此构造行人目标的超完备特征字典;第2阶段采用滑动窗口的方法得到图像中局部子图,然后利用基追踪算法求解每个局部子图的稀疏表示系数向量,最后定义一个函数度量每个子图存在行人目标的可能性,并设置相邻标记框的最小距离得到整幅图像最终的检测结果。实验结果表明,该方法能够有效地检测红外图像中的行人目标,具有较好的检测效果。Infrared pedestrian detection has many important applications in the fields of night intelligent video surveillance, vehicle driving safety and so on. In order to solve the problem of losing image spatial structure information after dimension-ality reduction, an algorithm based on the generalized two-dimensional principal component analysis and sparse representa- tion is proposed in this paper. The algorithm mainly consists of two phases : the first phase is that the two-dimensional prin- cipal component features are extracted by using generalized two-dimensional principal component analysis and then an over- complete feature dictionary of pedestrian targets is constructed. The second phase is that local sub-images are obtained by using a sliding window and then the sparse representation coefficient vectors of each sub-image are achieved by using the Basis Pursuit algorithm. Finally, a function is defined to measure the certainty of a pedestrian exist in the sub-images and then the final result of the whole image is achieved by setting minimum distance between the adjacent marked boxes. Exper-imental results show that the proposed method can effectively detect pedestrians in infrared images and has good perform-ance.
关 键 词:红外图像 广义二维主分量分析 稀疏表示 行人检测
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7