基于特征联合和偏最小二乘降维的手势识别  被引量:1

Gesture recognition based on feature combination and partial least squares dimensionality reduction

在线阅读下载全文

作  者:张世辉[1,2] 周绯菲[3] 郭顺超[1] 

机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004 [2]河北省计算机虚拟技术与系统集成重点实验室,河北秦皇岛066004 [3]交通运输部管理干部学院计算机系,北京101601

出  处:《燕山大学学报》2014年第1期41-48,共8页Journal of Yanshan University

基  金:河北省自然科学基金资助项目(F2010001276)

摘  要:针对以往手势识别研究中更关注识别率而弱化实时性的情况,首次将偏最小二乘降维思想引入手势识别领域,提出一种基于特征联合和偏最小二乘降维的手势识别方法。首先进行手势分割,在此基础上提取手势样本的梯度方向直方图和局部二值模式特征,并将二者进行联合。然后采用偏最小二乘法对手势联合特征进行降维,并将降维后的手势训练样本特征输入到支持向量机中进行分类训练。最后用训练好的支持向量机对降维后的手势测试样本进行识别测试。基于Jochen Triesch手势库及自制手势库的实验结果表明,同已有方法相比,本文所提方法在取得较高手势识别率的同时也取得了较好的实时性。As it is known that the research had paid more attention to recognition rate rather than real-time performance in the past, in this paper, the idea of partial least squares dimensionality reduction is introduced to the field of gesture recognition for the first time and a novel gesture recognition approach based on partial least squares and support vector machine is proposed. Firstly, the sample features of histograms of oriented gradients and local binary patterns are extracted and combined based on gesture segmen- tation. Secondly, the partial least squares method is adopted to reduce the dimension of the combined features and the combined features after dimensionality reduction is utilized to train the support vector machine. Finally, the gesture testing samples are tested with the trained support vector machine. Experimental results based on the gestures in Jochen Triesch and self-made gesture database show, compared with the existing methods, the proposed approach can achieve better performance on both recognition rate and real-time.

关 键 词:手势识别 特征联合 偏最小二乘法 梯度方向直方图 局部二值模式 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象