Kalman滤波融合优化Mean Shift的目标跟踪  被引量:1

在线阅读下载全文

作  者:韩涛[1] 邹强[1] 吴衡[1] 张虎龙[1] 侯海啸[1] 

机构地区:[1]中国飞行试验研究院,陕西西安710089

出  处:《硅谷》2014年第6期32-33,共2页

基  金:航空基金(2010ZD30004)

摘  要:目标跟踪中,目标跟踪的实时性和精度是首先要考虑的问题,同时背景变化、形状改变、目标遮挡,往往会导致跟踪失败。针对此问题,首先优化了Mean Shift算法迭代权值,优化后主要灰度贡献更加突出,次要灰度受到抑制,提高了跟踪的精度、避免了开方的繁琐运算。然后提出目标模板更新算法,解决了背景剧烈变化和目标形状改变时跟踪失败的问题。最后将优化Mean Shift算法与Kalman滤波融合,通过残差判定目标运动状态。仿真实验和分析表明,Kalman滤波融合优化Mean shift算法在目标遮挡,目标形状改变,背景变化时具有更高的跟踪精度和实时性。

关 键 词:KALMAN滤波 Mean SHIFT算法 目标跟踪 模板更新 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象