检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2014年第5期1383-1385,共3页journal of Computer Applications
基 金:安徽省自然科学基金资助项目(1208085QF107)
摘 要:针对粘着全自动公开的区分计算机和人的图灵测试(CAPTCHA)的识别问题,提出了一种基于谱聚类递归神经网络(RNN)集成的识别算法。该算法首先使用不一致测度度量两个RNN之间的距离,构建出一张由多个候选RNN形成的图;然后基于谱图聚类理论,将多个RNN划分为不同的簇,并在每个簇上选择最佳RNN参与集成。实验结果表明:相对于单个候选RNN,该算法的识别率提高了约16%;相对于全部候选RNN构成的集成系统,该算法形成的集成规模更小,仅为原来的23%。Concerning the recognition of closely-connected Completely Automated Public Turing Test to Tell Computers and Humans Apart ( CAPTCHA), a recognition algorithm based on spectral-clustering Recurrent Neural Network (RNN) ensemble was proposed. This algorithm firstly used disagreement measure for distance between two RNNs, thus constructed a graph composed by candidate RNNs. Then, a graph cluster method was used to divide RNNs into clusters. Finally, the best RNN in each cluster was selected. The experimental results reveal that: compared with single candidate RNN, recognition rates of this algorithm is increased by 16%. Compared with the ensemble of all candidate RNNs, ensemble size of this algorithm is much smaller, it is about 23% of the original size.
关 键 词:全自动公开区分计算机和人的图灵测试识别 谱聚类 递归神经网络 网络安全 多分类器集成
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222