检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李利正
机构地区:[1]绍兴职业技术学院 信息工程学院,浙江 绍兴312000
出 处:《计算机工程与应用》2014年第8期136-142,共7页Computer Engineering and Applications
基 金:浙江省教育技术研究规划课题(No.JB083).
摘 要:随着大规模图像分类数据集的出现,设计一种可扩展的、高效的多类分类算法成为目前一个重要的挑战。基于迹范数正则惩罚函数,提出了一种新的大规模多类图像分类的可扩展学习算法。把具有挑战性的非光滑优化问题重构为一个带l1正则惩罚的无穷维优化问题,进而设计了一个简单而有效的加速坐标下降算法。展示了如何在量化的密集视觉特征的压缩域中进行高效的矩阵计算,该压缩域有100000个例子,1000多维特征和100多类图片。在图像网的子集“Fungeus”,“Ungulate”和“Vehicles”上的实验结果表明,提出方法的性能明显优于目前最先进的16高斯Fisher向量方法。With the advent of larger image classification datasets, designing scalable and efficient multi-class classifica-tion algorithms is now an important challenge. It introduces a new scalable learning algorithm for large-scale multi-class image classification, based on the trace-norm regularization penalty. Reframing the challenging non-smooth optimization problem into a surrogate infinite-dimensional optimization problem with a regular l1 regularization penalty, it proposes a simple and provably efficient accelerated coordinate descent algorithm. Furthermore, it shows how to perform efficient matrix computations in the compressed domain for quantized dense visual features, scaling up to 100000 examples, 1000-dimensional features, and 100 categories. Promising experimental results on the“Fungus”,“Ungulate”, and“Vehicles”subsets of ImageNet are presented, it shows that the approach performs significantly better than state-of-the-art approaches for Fisher vectors with 16 Gaussians.
关 键 词:大规模图像 多类分类算法 L1范数 压缩域 坐标下降算法 Fisher向量
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.48