Paeonol protects rat vascular endothelial cells from ox-LDL-induced injury in vitro via downregulating microRNA-21 expression and TNF-α release  被引量:19

Paeonol protects rat vascular endothelial cells from ox-LDL-induced injury in vitro via downregulating microRNA-21 expression and TNF-α release

在线阅读下载全文

作  者:Ya-rong LIU Jun-jun CHEN Min DAI 

机构地区:[1]Key Laboratory of Chinese Medicine Research and Development [2]Key Laboratory of Xin'an Medicine, Hefei 230038, China [3]Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230031, China

出  处:《Acta Pharmacologica Sinica》2014年第4期483-488,共6页中国药理学报(英文版)

基  金:The studies were mainly supported by research grants from the National Natural Science Foundation of China (81073090 and 81274134). We thank Prof Hou-kai LI (Shanghai University of Traditional Chinese Medicine) for his contribution to the English translation.

摘  要:Aim: Paeonol (2'-hydroxy-4'-methoxyacetophenone) from Cortex moutan root is a potential therapeutic agent for atherosclerosis. This study sought to investigate the mechanisms underlying anti-inflammatory effects of paeonol in rat vascular endothelial cells (VECs) in vitro. Methods: VECs were isolated from rat thoracic aortas. The cells were pretreated with paeonol for 24 h, and then stimulated with ox-LDL for another 24 h. The expression of microRNA-21 (miR-21) and PTEN in VECs was analyzed using qRT-PCR. The expression of PTEN protein was detected by Western blotting. TNF-α release by VECs was measured by ELISA.Results: Ox-LDL treatment inhibited VEC growth in dose- and time-dependent manners (the value of IC50 was about 20 mg/L at 24 h). Furthermore, ox-LDL (20 mg/L) significantly increased miR-21 expression and inhibited the expression of PTEN, one of downstream target genes of miR-21 in VECs. In addition, ox-LDL (20 mg/L) significantly increased the release of TNF-α from VECs. Pretreatment with paeonol increased the survival rate of ox-LDL-treated VECs in dose- and time-dependent manners. Moreover, paeonol (120 μmol/L) prevented ox-LDL-induced increases in miR-21 expression and TNF-α release, and ox-LDL-induced inhibition in PTEN expression. A dual-luciferase reporter assay showed that miR-21 bound directly to PTEN's 3'-UTR, thus inhibiting PTEN expression. In ox-LDL treated VECs, transfection with a miR-21 mimic significantly increased miR-21 expression and inhibited PTEN expression, and attenuated the protective effects of paeonol pretreatment, whereas transfection with an miR-21 inhibitor significantly decreased miR-21 expression and increased PTEN expression, thus enhanced the protective effects of paeonol pretreatment. Conclusion: miR-21 is an important target of paeonol for its protective effects against ox-LDL-induced VEC injury, which may play critical roles in development of atherosclerosis.Aim: Paeonol (2'-hydroxy-4'-methoxyacetophenone) from Cortex moutan root is a potential therapeutic agent for atherosclerosis. This study sought to investigate the mechanisms underlying anti-inflammatory effects of paeonol in rat vascular endothelial cells (VECs) in vitro. Methods: VECs were isolated from rat thoracic aortas. The cells were pretreated with paeonol for 24 h, and then stimulated with ox-LDL for another 24 h. The expression of microRNA-21 (miR-21) and PTEN in VECs was analyzed using qRT-PCR. The expression of PTEN protein was detected by Western blotting. TNF-α release by VECs was measured by ELISA.Results: Ox-LDL treatment inhibited VEC growth in dose- and time-dependent manners (the value of IC50 was about 20 mg/L at 24 h). Furthermore, ox-LDL (20 mg/L) significantly increased miR-21 expression and inhibited the expression of PTEN, one of downstream target genes of miR-21 in VECs. In addition, ox-LDL (20 mg/L) significantly increased the release of TNF-α from VECs. Pretreatment with paeonol increased the survival rate of ox-LDL-treated VECs in dose- and time-dependent manners. Moreover, paeonol (120 μmol/L) prevented ox-LDL-induced increases in miR-21 expression and TNF-α release, and ox-LDL-induced inhibition in PTEN expression. A dual-luciferase reporter assay showed that miR-21 bound directly to PTEN's 3'-UTR, thus inhibiting PTEN expression. In ox-LDL treated VECs, transfection with a miR-21 mimic significantly increased miR-21 expression and inhibited PTEN expression, and attenuated the protective effects of paeonol pretreatment, whereas transfection with an miR-21 inhibitor significantly decreased miR-21 expression and increased PTEN expression, thus enhanced the protective effects of paeonol pretreatment. Conclusion: miR-21 is an important target of paeonol for its protective effects against ox-LDL-induced VEC injury, which may play critical roles in development of atherosclerosis.

关 键 词:PAEONOL ATHEROSCLEROSIS MICRORNA-21 PTEN vascular endothelial cells oxidized low density lipoprotein inflammatory reaction 

分 类 号:Q513.5[生物学—生物化学] Q463

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象