检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川师范大学计算机科学学院,四川成都610101
出 处:《计算机工程与设计》2014年第5期1807-1810,1832,共5页Computer Engineering and Design
基 金:国家科技计划基金项目(2012BAH76F01)
摘 要:为解决分类器训练过程中由于无标记数据的引入,容易产生噪音、降低分类精度的问题,提出了基于遗传算法的噪声过滤协同训练算法(CGA)。充分利用遗传算法的寻优功能,产生高适应度的分类规则,达到辅助协同训练算法挑选有价值的无标记数据,降低噪音的引入,确保参与协同训练分类器的精度和性能得到有效更新的目的。在UCI数据集上的实验验证了该算法的有效性。To decrease the introduction of noise data during the period of classifier training and to increase the ability of the classification when unlabeled data is used to update classifier, a collaboration-training based on genetic algorithm for noise filtering is proposed (CGA). Based on the optimization function of genetic algorithm, the procedure of CGA for assisting collaborative training to choose valuable data is presented. Experiments on UCI datasets prove that the algorithm is benefit for updating classifier and efficient for preventing the introduction of noise data.
关 键 词:遗传算法 半监督学习 协调训练 噪声过滤 无标记数据
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.83.94