检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北农业大学电气与信息学院,哈尔滨150030 [2]黑龙江省招生办,哈尔滨150090
出 处:《东北农业大学学报》2014年第4期107-112,共6页Journal of Northeast Agricultural University
基 金:中国博士后科学基金资助项目(20070410883);黑龙江省自然科学基金重点项目(ZD201303)
摘 要:对大豆进行快速准确分级,采集1—5等级大豆波长在1000~2500nm范围的高光谱图像数据,获得光谱图像;对不同大豆等级样本的光谱曲线进行分析;通过主成分分析法,从每个等级大豆样本中优选出四个特征波长,得到特征图像;从每个特征图像中分别提取基于灰度共生矩阵的4个纹理特征参数——能量、熵、惯性矩和相关性,从16个特征变量中选取8个主要特征变量,应用BP神经网络建立大豆品质分级识别模型。模型预测准确率为92%。结果表明,高光谱图像技术对大豆等级具有较好的识别作用,可为大豆的在线无损检测分级提供参考。In order to fast and exact classification of soybean,collection 1-5 grades soybean 1 000- 2 500 nm range of hyperspectral image data to obtain spectral image; analysis of different samples of soybean grade spectral curve; application of principal component analysis (PCA), from the 4 features of each variety selected optimal wavelength, extracted four texture feature parameters (moment of inertia, energy, entropy and correlation)from each feature in the image based on statistical moment. Select 8 main characteristic variables from 16 characteristic variables, establishment of soybean grade identification model based on BP neural network. Experimental results showed that discriminating rate was 92% in the prediction set. Results showed that the hyperspectral image technology had better recognition effects on soybean grade, Provided a good reference for soybean online non-destructive testing classification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198