道路交通噪声源强快速建模方法  被引量:2

Fast Modeling Method for Analyzing the Intensity of Road Traffic Noise Sources

在线阅读下载全文

作  者:杨洁[1] 李贤徽[1] 蒋从双[1] 王文江[1] 

机构地区:[1]北京市劳动保护科学研究所环境噪声与振动北京市重点实验室,北京100054

出  处:《噪声与振动控制》2014年第1期140-145,共6页Noise and Vibration Control

基  金:北京市科学技术研究院科技创新工程项目(PXM2001_178304_112770;PXM2012_178304_000008);北京市自然科学基金资助项目(8132027)

摘  要:道路交通噪声源强的预测是道路交通噪声预测的关键。由于车辆状况、道路状况等在我国具有不同的特点;因而在采用国外道路交通噪声源强模型时将导致准确性降低。建立源强模型通常采用的实验方法对场地要求严格,样本数量需求巨大,不易获得本地模型。基于标准实验情况建立的模型不一定适用于复杂的城市交通流。为此,提出一种简单快速建立符合本地城市交通特点模型的方法,该方法以实测交通流数据计算观测点噪声,通过优化算法求解最优参数,确定本地化源强模型。该方法利用多辆车共同作用得到的等效声级,反演得到单车模型,既包含了丰富的样本,又节省测量时间。以北京选取道路的实践为例,建立模型并验证,结果表明本方法快速易行,准确性高。Prediction of intensity of road traffic noise sources is the key for road traffic noise prediction. Because thevehicle conditions and road conditions in China are different from those in foreign countries, direct application of the foreignmodels will reduce the prediction accuracy. However, it is difficult to establish a local model for the prediction because itneeds a testing field with very high quality and the huge amount of samples. Besides, the model based on standardexperiment may not be suitable to the complex urban traffic flow. This paper proposes a simple and rapid method to establisha model in accordance with the characteristics of the local urban transport. In this method, the noise at the observation pointsis calculated according to the measured traffic data, and then the optimal model parameters are determined by optimizingalgorithm. Inversing the equivalent sound level resulted from the multi-vehicles co-action, a single-car sound-power-levelmodel is obtained. This model can not only contain a wealth of samples, but also save the measurement time. Finally, amodel is established and validated based on actually measured traffic data in Beijing, and the results show that this method isfast, easy for use and very accurate.

关 键 词:声学 道路交通噪声 源强模型 本地模型 噪声监测 

分 类 号:TB5[理学—物理] TB535[理学—声学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象