采用多目标进化模型的无监督故障特征选择算法  被引量:4

Unsupervised feature selection algorithm with a multi-objective evolutionary model for fault diagnosis

在线阅读下载全文

作  者:夏虎 庄健[1] 周璠 于德弘[1] 

机构地区:[1]西安交通大学机械工程学院,西安710049 [2]一汽-大众汽车有限公司,长春130011

出  处:《振动与冲击》2014年第8期61-65,87,共6页Journal of Vibration and Shock

基  金:国家自然科学基金面上项目(51375363);广东省战略性新兴产业核心技术攻关项目(2012A090100010);西安市科技计划项目(CX1250④)

摘  要:高维故障特征数据易影响诊断的处理速度和识别率,而传统单目标特征选择算法易融入主观偏好,从而影响特征选择的质量。为此,提出一种无监督的多目标进化特征选择算法。采用熵度量作为相关度目标,采用相关系数的概念设计了冗余度目标,算法同时将这两个目标作为优化对象;利用样本在各个特征上的分布信息,设计了导向性的种群初始化过程和变异算子,以提高算法的优化能力;还利用集成的方法得到了所有特征的重要度序列。对5组UCI数据和3组往复式压缩机故障数据的测试结果表明,该算法比已有的几种特征选择算法更具优势。Feature selection is necessary for high-dimensional fault features since it can improve efficiency and accuracy of a fault diagnosis.However,traditional feature selection algorithm always has a strong bias towards a single criterion,it is harmful to the quality of feature selection.An unsupervised feature selection algorithm based on a multi-objective evolutionary model was proposed to solve this problem.A relevance objective based on entropy measure and a redundancy objective based on correlation coefficients were simultaneously optimized.Both initialization process and mutation operator were also designed by utilizing the distribution information of samples in each feature.Besides,an ensemble method was proposed to obtain the importance sequences.Experiments for five sets of UCI data and three groups of valve fault data of reciprocating compressors demonstrated the better performance of the proposed algorithm.

关 键 词:特征选择 多目标进化算法 冗余度 故障诊断 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象