检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学机械工程学院,西安710049 [2]一汽-大众汽车有限公司,长春130011
出 处:《振动与冲击》2014年第8期61-65,87,共6页Journal of Vibration and Shock
基 金:国家自然科学基金面上项目(51375363);广东省战略性新兴产业核心技术攻关项目(2012A090100010);西安市科技计划项目(CX1250④)
摘 要:高维故障特征数据易影响诊断的处理速度和识别率,而传统单目标特征选择算法易融入主观偏好,从而影响特征选择的质量。为此,提出一种无监督的多目标进化特征选择算法。采用熵度量作为相关度目标,采用相关系数的概念设计了冗余度目标,算法同时将这两个目标作为优化对象;利用样本在各个特征上的分布信息,设计了导向性的种群初始化过程和变异算子,以提高算法的优化能力;还利用集成的方法得到了所有特征的重要度序列。对5组UCI数据和3组往复式压缩机故障数据的测试结果表明,该算法比已有的几种特征选择算法更具优势。Feature selection is necessary for high-dimensional fault features since it can improve efficiency and accuracy of a fault diagnosis.However,traditional feature selection algorithm always has a strong bias towards a single criterion,it is harmful to the quality of feature selection.An unsupervised feature selection algorithm based on a multi-objective evolutionary model was proposed to solve this problem.A relevance objective based on entropy measure and a redundancy objective based on correlation coefficients were simultaneously optimized.Both initialization process and mutation operator were also designed by utilizing the distribution information of samples in each feature.Besides,an ensemble method was proposed to obtain the importance sequences.Experiments for five sets of UCI data and three groups of valve fault data of reciprocating compressors demonstrated the better performance of the proposed algorithm.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222