检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李仁忠[1] 张缓缓[1] 景军锋[1] 李鹏飞[1]
机构地区:[1]西安工程大学,西安710048
出 处:《计算机工程与应用》2014年第10期184-187,共4页Computer Engineering and Applications
基 金:中国纺织工业联合会科技指导性项目(No.2013066);陕西省教育厅自然科学专项(No.2013JK0655);西安工程大学博士启动基金
摘 要:为准确检测织物在生产过程产生的疵点,提出了一种基于EM算法的高斯混合模型的算法来实现织物疵点的自动检测。由于织物背景纹理信息对织物疵点检测影响较大,采用均值采样对其进行预处理来消除背景纹理的影响,用高斯混合模型对新得到的图像进行处理。在进行高斯混合模型计算时分为E步骤、M步骤。E步骤初始化参数,计算样本像素的后验概率,M步骤更新高斯混合模型中的各参数。根据计算各像素的后验概率判断各像素点应该属于疵点部分还是非疵点部分。实验结果证明该算法能检测、分割出较多种类的织物疵点,具有较好的有效性和可靠性。To detect the accurate fabric defects which were generated during the production process, an approach based on Gaussian mixture model of the EM algorithm is presented to achieve automatic detection. Because fabric background texture has greater impact on the fabric defect detection, preprocessing is done by using mean sample to remove its background texture effects, then the Gaussian mixture model is applied to process the new image. Gaussian mixture model calculations are divided into E, M steps. E step is used to initialize the parameters and to calculate the posterior probability of the sample pixel, M steps is used to update the Gaussian mixture model parameters. The defects and background area of the pixel are determined based on their calculated posterior probability. The experimental results show that the proposed algorithm can detect and segment the kinds of fabric defects, and has a good validity and reliability.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104