检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]三明学院土木工程学院,福建三明365004 [2]淮海工学院理学院,江苏连云港222005
出 处:《数学杂志》2014年第3期487-496,共10页Journal of Mathematics
基 金:Supported by National Natural Science Foundation of China(10971240);National Natural Science Foundation of Huaihai Institute of Technology(KK06004)
摘 要:本文研究了一类随机时滞递归神经网络的指数稳定性问题.利用非负鞅收敛定理和Lyapunov泛函的方法,获得了这类神经网络矩指数稳定性的新的代数准则,所给代数准则简单易用.一个具体实例用来说明稳定性判别准则的应用.The moment exponential stability for a stochastic delay recurrent neural networks is discussed by means of a nonnegative semi-martingale convergence theorem and Lyapunov functional method. The new algebraic criteria of the moment exponential stability for a stochastic delay recurrent neural network is derived, and these algebraic criteria are simple and practical. An example is also given for illustration.
关 键 词:随机递归神经网络 变时滞 矩指数稳定性 LYAPUNOV指数
分 类 号:O231.3[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.100.196