检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《北京师范大学学报(自然科学版)》2001年第1期1-4,共4页Journal of Beijing Normal University(Natural Science)
基 金:国家自然科学基金资助项目 !(10 0 710 0 6 ) ;教育部博士点基金资助项目
摘 要:证明了当 f∈PWπ时 ,‖s(k)2mf - f(k) ‖ Lp(R) → 0 (m→∞ ,2≤p≤∞ ,k =0 ,1,2 ,… ) ,其中PWπ是经典的Paley Wiener类 ,s2mf是在实Riesz基序列上对 f插值的唯一确定 2m - 1次缓增样条 .同时还证明了当 { f(tj) }∈l2 ,f∈Lp(R) (p≥ 2 ) ,‖s2mf‖2 ≤A一致成立时 ,若limm→∞ ‖f -s2mf‖ p=0 ,则 f∈Bπ ,p,其中Bπ ,p为指数π型整函数在R上的限制与Lp(R)It is proved that if f∈PW π , then ‖s (k) 2m f-f (k) ‖ L p(R) →0 as m→∞,2<p≤∞,k=1,2,…, where PW π denotes the classical Paley Wiener class, s 2m f is the unique tempered spline of degree 2m-1 interpolating to f at real Riesz basis sequence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.255.50